# Load required packages
library(incidence2) # for uk covid daily deaths
library(EpiNow2) # to estimate time-varying reproduction number
library(epiparameter) # to access delay distributions
library(cfr) # for Ebola data (included in this package)
library(dplyr) # to format input and outputs
library(ggplot2) # to generate plots
# Set number of cores
::local_options(list(mc.cores = 4))
withr
# Extract data on UK COVID deaths and format for EpiNow2
<- incidence2::covidregionaldataUK %>%
incidence_data # preprocess missing values
::replace_na(list(deaths_new = 0)) %>%
tidyr# compute the daily incidence
::incidence(
incidence2date_index = "date",
counts = "deaths_new",
count_values_to = "confirm",
date_names_to = "date",
complete_dates = TRUE
%>%
) ::select(-count_variable) %>%
dplyr# Focus on early 2020 period and sort by ascending date
::filter(date<"2020-07-01" & date>="2020-03-01") %>%
dplyr# convert to tibble format for simpler data frame output
::as_tibble()
dplyr
# Preview data
incidence_data#> # A tibble: 122 × 2
#> date confirm
#> <date> <dbl>
#> 1 2020-03-01 0
#> 2 2020-03-02 2
#> 3 2020-03-03 4
#> 4 2020-03-04 0
#> 5 2020-03-05 5
#> 6 2020-03-06 0
#> 7 2020-03-07 0
#> 8 2020-03-08 6
#> 9 2020-03-09 10
#> 10 2020-03-10 6
#> # ℹ 112 more rows
# Define parameters
# Extract infection-to-death distribution (from Aloon et al)
<-
incubation_period_in ::epiparameter_db(
epiparameterdisease = "covid",
epi_name = "incubation",
single_epiparameter = TRUE
)
# Summarise distribution and type
print(incubation_period_in)
#> Disease: COVID-19
#> Pathogen: SARS-CoV-2
#> Epi Parameter: incubation period
#> Study: Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan
#> B, Kinoshita R, Nishiura H (2020). "Incubation Period and Other
#> Epidemiological Characteristics of 2019 Novel Coronavirus Infections
#> with Right Truncation: A Statistical Analysis of Publicly Available
#> Case Data." _Journal of Clinical Medicine_. doi:10.3390/jcm9020538
#> <https://doi.org/10.3390/jcm9020538>.
#> Distribution: lnorm
#> Parameters:
#> meanlog: 1.525
#> sdlog: 0.629
# Get parameters and format for EpiNow2 using LogNormal input
<- epiparameter::get_parameters(incubation_period_in)
incubation_params
# Find the upper 99.9% range by the interval
<- round(quantile(incubation_period_in,0.999))
incubation_max
<- EpiNow2::LogNormal(
incubation_period meanlog = incubation_params[["meanlog"]],
sdlog = incubation_params[["sdlog"]],
max = incubation_max
)
## Set onset to death period (from Linton et al)
<-
onset_to_death_period_in ::epiparameter_db(
epiparameterdisease = "covid",
epi_name = "onset to death",
single_epiparameter = TRUE
)
# Summarise distribution and type
print(onset_to_death_period_in)
#> Disease: COVID-19
#> Pathogen: SARS-CoV-2
#> Epi Parameter: onset to death
#> Study: Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan
#> B, Kinoshita R, Nishiura H (2020). "Incubation Period and Other
#> Epidemiological Characteristics of 2019 Novel Coronavirus Infections
#> with Right Truncation: A Statistical Analysis of Publicly Available
#> Case Data." _Journal of Clinical Medicine_. doi:10.3390/jcm9020538
#> <https://doi.org/10.3390/jcm9020538>.
#> Distribution: lnorm
#> Parameters:
#> meanlog: 2.863
#> sdlog: 0.534
# Get parameters and format for EpiNow2 using LogNormal input
<- epiparameter::get_parameters(onset_to_death_period_in)
onset_to_death_params
# Find the upper 99.9% range by the interval
<- round(quantile(onset_to_death_period_in,0.999))
onset_to_death_max
<- LogNormal(
onset_to_death_period meanlog = onset_to_death_params[["meanlog"]],
sdlog = onset_to_death_params[["sdlog"]],
max = onset_to_death_max
)
## Combine infection-to-onset and onset-to-death
<- incubation_period + onset_to_death_period
infection_to_death
# Plot underlying delay distributions
# plot(infection_to_death)
# Extract serial interval distribution distribution (from Yang et al)
<-
serial_interval_in ::epiparameter_db(
epiparameterdisease = "covid",
epi_name = "serial",
single_epiparameter = TRUE
)
# Summarise distribution and type
print(serial_interval_in)
#> Disease: COVID-19
#> Pathogen: SARS-CoV-2
#> Epi Parameter: serial interval
#> Study: Nishiura H, Linton N, Akhmetzhanov A (2020). "Serial interval of novel
#> coronavirus (COVID-19) infections." _International Journal of
#> Infectious Diseases_. doi:10.1016/j.ijid.2020.02.060
#> <https://doi.org/10.1016/j.ijid.2020.02.060>.
#> Distribution: lnorm
#> Parameters:
#> meanlog: 1.386
#> sdlog: 0.568
# Discretise serial interval for input into EpiNow2
<- epiparameter::discretise(serial_interval_in)
serial_int_discrete
# Find the upper 99.9% range by the interval
<- quantile(serial_int_discrete,0.999)
serial_int_discrete_max
# Get parameters
<- epiparameter::get_parameters(serial_int_discrete)
serial_params
# Define parameters using LogNormal input
<- LogNormal(
serial_interval_covid meanlog = serial_params[["meanlog"]],
sdlog = serial_params[["sdlog"]],
max = serial_int_discrete_max
)# Run infection estimation model
<- epinow(
epinow_estimates data = incidence_data, # time series data
# assume generation time = serial interval
generation_time = generation_time_opts(serial_interval_covid),
# delay from infection-to-death
delays = delay_opts(infection_to_death),
# no Rt estimation
rt = NULL
)
# Extract infection estimates from the model output
<- epinow_estimates$estimates$summarised %>%
infection_estimates ::filter(variable=="infections")
dplyr
# Plot output
$plots$infections +
epinow_estimatesgeom_vline(aes(xintercept = as.Date("2020-03-16")), linetype = 3) +
geom_text(aes(x = as.Date("2020-03-16"),
y = 3000,
label = "Non-essential contact advice"),
hjust = 0) +
geom_vline(aes(xintercept = as.Date("2020-03-23")), linetype = 3) +
geom_text(aes(x = as.Date("2020-03-23"),
y = 2500,
label = "Stay-at-home order (i.e. lockdown)"),
hjust = 0) +
labs(
title = "Estimated dynamics of SARS-CoV-2 infections
among those with subsequent fatal outcomes in the UK,
reconstructed using data on reported deaths.",
subtitle = "Dashed lines show dates of
UK non-essential contact advice (16 Mar)
and lockdown (23 Mar)."
)
How to reconstruct infection dynamics from incidence data on delayed outcomes like deaths
Ingredients
- We want to estimate infection dynamics from incidence data on delayed outcomes such as hospitalisations or deaths.
- What we have:
- Time series of new outcomes (e.g. deaths) per day.
- Estimates of the delay from infection-to-onset and onset-to-death distributions
- We assume new infections each day have a prior based on a Gaussian process, which allows for faster estimation from delayed outcome data than modelling the full transmission process (and hence also estimating the time varying reproduction number \(R_t\)).
Steps in code
Example 1
Reconstruct SARS-CoV-2 infection dynamics in the UK from daily data on deaths, 2020
Example 2
Reconstruct Ebola infection dynamics in the UK from data on deaths, 1976
# Load required packages
library(incidence2) # for uk covid daily deaths
library(EpiNow2) # to estimate time-varying reproduction number
library(epiparameter) # to access delay distributions
library(cfr) # for Ebola data (included in this package)
library(dplyr) # to format input and outputs
library(ggplot2) # to generate plots
# Set number of cores
::local_options(list(mc.cores = 4))
withr
# Load Ebola data from the CFR package
data("ebola1976")
# Extract data on case onsets and format for EpiNow2
<- ebola1976 %>%
incidence_data_ebola ::as_tibble() %>% # for simpler dataframe output
dplyr::select(date,cases) %>%
dplyr::rename(confirm = cases) %>%
dplyr::filter(date >= "1976-09-01")
dplyr
# Preview data
incidence_data_ebola#> # A tibble: 66 × 2
#> date confirm
#> <date> <int>
#> 1 1976-09-01 1
#> 2 1976-09-02 1
#> 3 1976-09-03 1
#> 4 1976-09-04 4
#> 5 1976-09-05 1
#> 6 1976-09-06 1
#> 7 1976-09-07 3
#> 8 1976-09-08 2
#> 9 1976-09-09 7
#> 10 1976-09-10 9
#> # ℹ 56 more rows
# Extract infection-to-death distribution (from WHO Ebola Response Team)
<-
incubation_period_ebola_in ::epiparameter_db(
epiparameterdisease = "ebola",
epi_name = "incubation",
single_epiparameter = TRUE
)
# Summarise distribution and type
print(incubation_period_ebola_in)
#> Disease: Ebola Virus Disease
#> Pathogen: Ebola Virus
#> Epi Parameter: incubation period
#> Study: WHO Ebola Response Team, Agua-Agum J, Ariyarajah A, Aylward B, Blake I,
#> Brennan R, Cori A, Donnelly C, Dorigatti I, Dye C, Eckmanns T, Ferguson
#> N, Formenty P, Fraser C, Garcia E, Garske T, Hinsley W, Holmes D,
#> Hugonnet S, Iyengar S, Jombart T, Krishnan R, Meijers S, Mills H,
#> Mohamed Y, Nedjati-Gilani G, Newton E, Nouvellet P, Pelletier L,
#> Perkins D, Riley S, Sagrado M, Schnitzler J, Schumacher D, Shah A, Van
#> Kerkhove M, Varsaneux O, Kannangarage N (2015). "West African Ebola
#> Epidemic after One Year — Slowing but Not Yet under Control." _The New
#> England Journal of Medicine_. doi:10.1056/NEJMc1414992
#> <https://doi.org/10.1056/NEJMc1414992>.
#> Distribution: gamma
#> Parameters:
#> shape: 1.578
#> scale: 6.528
# Get parameters and format for EpiNow2 using Gamma input
<- epiparameter::get_parameters(incubation_period_ebola_in)
incubation_ebola_params
# Find the upper 99.9% range by the interval
<- round(quantile(incubation_period_ebola_in,0.999))
incubation_ebola_max
<- EpiNow2::Gamma(
incubation_period_ebola shape = incubation_ebola_params[["shape"]],
rate = 1/incubation_ebola_params[["scale"]],
max = incubation_ebola_max
)
# Plot delay distribution
# plot(incubation_period_ebola)
# Extract serial interval distribution distribution
# (from WHO Ebola Response Team)
<-
serial_interval_ebola_in ::epiparameter_db(
epiparameterdisease = "ebola",
epi_name = "serial",
single_epiparameter = TRUE
)
# Summarise distribution and type
# print(serial_interval_ebola_in)
# Discretise serial interval for input into EpiNow2
<- epiparameter::discretise(serial_interval_ebola_in)
serial_int_ebola_discrete
# Find the upper 99.9% range by the interval
<- quantile(serial_int_ebola_discrete,0.999)
serial_int_ebola_discrete_max
# Define parameters using LogNormal input
<- epiparameter::get_parameters(serial_int_ebola_discrete)
serial_ebola_params
<- EpiNow2::Gamma(
serial_interval_ebola shape = serial_ebola_params[["shape"]],
rate = 1/serial_ebola_params[["scale"]],
max = serial_int_ebola_discrete_max
)
# Run infection estimation model
<- EpiNow2::epinow(
epinow_estimates data = incidence_data_ebola, # time series data
# assume generation time = serial interval
generation_time = generation_time_opts(serial_interval_ebola),
# delay from infection-to-death
delays = delay_opts(incubation_period_ebola),
rt = NULL,
# use zero-centered prior
# instead of one centered around shifted reported cases
backcalc = backcalc_opts(prior = "none")
)
# Extract infection estimates from the model output
<- epinow_estimates$estimates$summarised %>%
infection_estimates ::filter(variable=="infections")
dplyr
# Plot output
$plots$infections +
epinow_estimatesgeom_vline(aes(xintercept = as.Date("1976-09-30")), linetype = 3) +
geom_text(aes(x = as.Date("1976-09-30"),
y = 12,
label = "Date of\nlocal hospital\nclosure"),
hjust = 0) +
labs(
title = "Estimated dynamics of Ebola infections
among those with subsequent onsets in the 1976 Yambuku outbreak,
reconstructed using reported case data.",
subtitle = "Dashed line shows the date on which the local hospital
- and source of early nosocomial infections- was closed (30 Sep).")
Steps in detail
Example 1
- Example 1 aims to reconstruct SARS-CoV-2 infection dynamics in the UK from daily data on deaths
- First, we load daily data on reported COVID deaths from the UK COVID dashboard by copying the ‘download data as csv’ link, then using the
httr
package to import into R and format as adata.frame
. - The
EpiNow2
package expects data in a two column format with namesdate
andconfirm
so we format the imported data accordingly. - Next, we import an estimate of the COVID incubation period (i.e. delay from infection to symptom onset) and onset-to-death distributions from
epiparameter
, then combine these two distributions to specify the infection-to-death distribution and plot the result. - For EpiNow2, we also need to define the timescale of the epidemic, i.e. the delay from one infection to the next. We can use serial interval (delay from onset of infector to onset of infectee) as a proxy for this if we assume that the variance of the incubation period of the infector is independent of the variance of the time from onset of symptoms in the infector to infection of the infectee (Lehtinen et al, JR Soc Interface, 2021).
- To reconstruct infection dynamics from deaths, we use a non-mechanistic infection model (see the “estimate_infections()” vignette for more details of this model, which uses a Gaussian Process implementation). Because this model does not calculate the time varying reproduction number \(R_t\), it can be run by setting
rt=NULL
in the mainepinow()
function (which callsestimate_infections()
in the background).
Example 2
- For Example 2, we will repeat the analysis, but using data on onset dates from the first recorded outbreak in Yambuku, 1976 (Camacho et al, Epidemics, 2014). This outbreak starts with a single case identified on 25th August 1976, then no further cases until 1st September, after which cases continue to be reported. We therefore focus on the period after 1st September, because it can be challenging for EpiNow2 to estimate dynamics when there is a prolonged initial period of zero counts.
- Next, we import an estimate of the Ebola incubation period that we will use to reconstruct infections. This time, the extracted parameter follows a gamma distribution, so we use the
Gamma()
function in{EpiNow2}
. - Next, we define the timescale of the epidemic by defining the serial interval.
- With parameters defined, we reconstruct infection timings from the case onset data. Because there are relatively low numbers of cases, the non-mechanistic model can be unstable, so we remove the
rt=NULL
argument to reconstruct infections using model of the transmission process based on a “renewal equation”. - Plot comparison of observed outcomes and estimated infections