# **Demo: Comparing vaccination strategies with** finalsize

This is a fictional use case to demonstrate: The kind of new insights Epiverse tools are unlocking • • possible







- Why these tools need to be open-source and disseminated are widely as



## **Fictional situation**

Outbreak currently ongoing in Senegal 1,000,000 doses of vaccines (80% efficacy) available

How to distribute a limited doses supply?



•

•





indirect protection from immunized individuals



# In a partially immunized population, unimmunized individuals get



A

#### In a partially immunized population, unimmunized individuals get indirect protection from immunized individuals

D

B







Α

#### In a partially immunized population, unimmunized individuals get indirect protection from immunized individuals

B







#### In a partially immunized population, unimmunized individuals get indirect protection from immunized individuals









#### In a partially immunized population, unimmunized individuals get indirect protection from immunized individuals









#### In a partially immunized population, unimmunized individuals get indirect protection from immunized individuals







A

#### In a partially immunized population, unimmunized individuals get indirect protection from immunized individuals

B







#### In a partially immunized population, unimmunized individuals get indirect protection from immunized individuals

B



A





#### **3** scenarios to compare

population via herd immunity?

Scenario A: Give 1,000,000 doses to the youngest age group **Scenario B**: Give 1,000,000 doses to the oldest age group



•

•

•

How to distribute the 1,000,000 doses to maximize their impact in the entire

- Scenario C: Give 1,000,000 doses uniformly across the whole population





| lleing finaleizo   | demo_grp |
|--------------------|----------|
| USING MAISIZE      | 00_05    |
|                    | 05_10    |
| library(finalsize) | 10_15    |
|                    | 15_20    |
|                    | 20_25    |
|                    | 25_30    |
|                    | 30_35    |
|                    | 35_40    |
| final_size(        | 40_45    |
|                    | 45_50    |
| r0 = r0,           | 50_55    |
|                    | 55_60    |
| contact_matrix,    | 60_65    |
|                    | 65_70    |
| demography_vector, | 70_75    |
| suscentibility     | 75_80    |
| p_susceptibility   | 00_05    |
|                    | 05_10    |
|                    | 10_15    |
|                    | 15_20    |

#### data.org

| susc_grp   | susceptibility | p_infected |
|------------|----------------|------------|
| susc_grp_1 | 0.70           | 0.0431598  |
| susc_grp_1 | 0.70           | 0.0707364  |
| susc_grp_1 | 0.70           | 0.0835088  |
| susc_grp_1 | 0.70           | 0.0723355  |
| susc_grp_1 | 0.70           | 0.0495588  |
| susc_grp_1 | 0.70           | 0.0526637  |
| susc_grp_1 | 0.70           | 0.0541672  |
| susc_grp_1 | 0.70           | 0.0581954  |
| susc_grp_1 | 0.70           | 0.0603913  |
| susc_grp_1 | 0.70           | 0.0557931  |
| susc_grp_1 | 0.70           | 0.0603806  |
| susc_grp_1 | 0.70           | 0.0540232  |
| susc_grp_1 | 0.70           | 0.0569088  |
| susc_grp_1 | 0.70           | 0.0597207  |
| susc_grp_1 | 0.70           | 0.0632707  |
| susc_grp_1 | 0.70           | 0.0483331  |
| susc_grp_2 | 0.14           | 0.0087850  |
| susc_grp_2 | 0.14           | 0.0145655  |
| susc_grp_2 | 0.14           | 0.0172894  |
| susc_grp_2 | 0.14           | 0.0149048  |

#### Outcome







#### Number of infected by age group and scenario





Vaccinating across all age groups • reduces most the overall number of infections





#### Outcome

Vaccinating across all age groups • reduces most the overall number of infections

Vaccinating across all age groups • protects more the youngest age group than targeted campaigns





#### Number of infected by age group and scenario



#### **Potential improvements**

Flexibility is baked into the tool and virtually any improvement is possible:

Take into account age-specific fatality rate
Take into account different contact rates across different regions
Multiple doses vaccine schema
etc.



\_



•

•

- Vaccinating across all age groups reduces most the overall number of infections
- Vaccinating across all age groups protects more the youngest age group than targeted campaigns





•

•

Vaccinating across all age groups reduces most the overall number of infections

Vaccinating across all age groups protects more the youngest age group than targeted campaigns

For the Senegal case and this specific outbreak!



#### Localism

Insights from Africa may not fit Latin America or Europe since results depends on the population pyramid and contact patterns.

It is important the everyone has access to these tools & capacity to run analyses and simulations in their own context.

