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Introduction
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Source: https://lifecycle.r-lib.org/articles/stages.html 

“Superseded functions [and 
packages] will not receive new 
features but will receive any critical 
bug fixes needed to keep it working.”

R package lifecycles



Superseding R packages (reasons)
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• Sometimes not exactly clear why but…

• Re-imagination | reboot:
• New infrastructure -> Name change:

• {ggplot} -> {ggplot2}

• Scope changes:
• {plyr} -> {dplyr} for data.frames OR {purrr} for lists
• {reshape} -> {reshape2} -> {tidyr}

• Function & NAMESPACE redesign:
• Many examples in {tidyverse}, etc.

• Interoperability



Lessons learned so far

4



Lesson 1: Be a reproducibility champion
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• Consider: Keeping old analysis scripts running 
(reproducibility)

• Implications: 

• Maintenance overhead:

• Maintain old package (exist forever?)

• Create new package



Lesson 2. Acknowledge contributions
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• Consider: Preserving contributions (commits, issues, pull requests, etc):

• Implications: 

• Choose the right Git workflow:

• Fork (and detach) 

• Original codebase as initial commit

• Squash-commits no-fork



Lesson 3. Be transparent with the user community
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• Consider: Informing the users of development updates

• Implications: 

• Add Lifecyle section in README

• Add a retirement explanation vignette

• Print console messages 



Other considerations
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• Semantic versioning:
• “Reset” to development version vs continue from version of superseded

• Duplicated effort:
• Documentation: manuals/vignettes and user guides



Conclusion
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• Superseding R packages is quite common:
• reasons often unclear

• The decision can be costly, leading to many considerations:
• Maintaining both the superseded and new package
• Preserving contributions
• Communication with users, and
• Semantic versioning

• Audience: Any experiences and considerations to share?
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