
Superseding R packages – lessons learned
from transitioning to {epichains} from
{bpmodels}

James M. Azam
Research Software Engineer, Epiverse Initiative (London School of Hygiene and Tropical Medicine)

Presentation at RSLondonSouthEast 2023

Introduction

2

Source: https://lifecycle.r-lib.org/articles/stages.html

“Superseded functions [and
packages] will not receive new
features but will receive any critical
bug fixes needed to keep it working.”

R package lifecycles

Superseding R packages (reasons)

3

• Sometimes not exactly clear why but…

• Re-imagination | reboot:
• New infrastructure -> Name change:

• {ggplot} -> {ggplot2}

• Scope changes:
• {plyr} -> {dplyr} for data.frames OR {purrr} for lists
• {reshape} -> {reshape2} -> {tidyr}

• Function & NAMESPACE redesign:
• Many examples in {tidyverse}, etc.

• Interoperability

Lessons learned so far

4

Lesson 1: Be a reproducibility champion

5

• Consider: Keeping old analysis scripts running
(reproducibility)

• Implications:

• Maintenance overhead:

• Maintain old package (exist forever?)

• Create new package

Lesson 2. Acknowledge contributions

6

• Consider: Preserving contributions (commits, issues, pull requests, etc):

• Implications:

• Choose the right Git workflow:

• Fork (and detach)

• Original codebase as initial commit

• Squash-commits no-fork

Lesson 3. Be transparent with the user community

7

• Consider: Informing the users of development updates

• Implications:

• Add Lifecyle section in README

• Add a retirement explanation vignette

• Print console messages

Other considerations

8

• Semantic versioning:
• “Reset” to development version vs continue from version of superseded

• Duplicated effort:
• Documentation: manuals/vignettes and user guides

Conclusion

9

• Superseding R packages is quite common:
• reasons often unclear

• The decision can be costly, leading to many considerations:
• Maintaining both the superseded and new package
• Preserving contributions
• Communication with users, and
• Semantic versioning

• Audience: Any experiences and considerations to share?

10

References

1. R package lifecycles: https://lifecycle.r-lib.org/
2. {bpmodels}: https://github.com/epiverse-trace/bpmodels
3. {epichains}: https://github.com/epiverse-trace/epichains
4. {reshape}: https://github.com/hadley/reshape
5. {plyr}: https://github.com/hadley/plyr

https://lifecycle.r-lib.org/
https://github.com/epiverse-trace/bpmodels
https://github.com/epiverse-trace/epichains
https://github.com/hadley/reshape
https://github.com/hadley/plyr

11

Contact

James M. Azam

Twitter: @james_azam

Github: @jamesmbaazam

Epiverse-TRACE

Twitter: @epiverse_TRACE

Github: github.com/epiverse-trace

