Calculate the probability a branching process will go extinct based on R, k and initial cases
Source:R/probability_epidemic.R
probability_extinct.RdCalculates the probability a branching process will not causes an epidemic
and will go extinct. This is the complement of the probability of a disease
causing an epidemic (probability_epidemic()).
Usage
probability_extinct(
R,
k,
num_init_infect,
ind_control = 0,
pop_control = 0,
...,
offspring_dist
)Arguments
- R
A
numberspecifying the \(R\) parameter (i.e. average secondary cases per infectious individual).- k
A
numberspecifying the \(k\) parameter (i.e. dispersion in offspring distribution from fitted negative binomial).- num_init_infect
An
integer(or at least "integerish" if stored as double) specifying the number of initial infections.- ind_control
A
numericspecifying the strength of individual-level control measures. These control measures assume that infected individuals do not produce any secondary infections with probabilityind_control, thus increasing the proportion of cases that do not create any subsequent infections. The control measure is between0(default) and1(maximum).- pop_control
A
numericspecifying the strength of population-level control measures that reduce the transmissibility of all cases by a constant factor. Between0(default) and1(maximum).- ...
<
dynamic-dots> Named elements to replace default optimisation settings. Currently only"fit_method"is accepted and can be either"optim"(default) or"grid"for numerical optimisation routine or grid search, respectively.- offspring_dist
An
<epiparameter>object. An S3 class for working with epidemiological parameters/distributions, seeepiparameter::epiparameter().
References
Lloyd-Smith, J. O., Schreiber, S. J., Kopp, P. E., & Getz, W. M. (2005) Superspreading and the effect of individual variation on disease emergence. Nature, 438(7066), 355-359. doi:10.1038/nature04153