Skip to contents

This function generates seropositivity probabilities based on either a time-varying Force-of-Infection (FoI) model, an age-varying FoI model, or an age-and-time-varying FoI model. In all cases, it is possible to optionally include seroreversion.

Usage

prob_seroprev_by_age(model, foi, seroreversion_rate = 0)

Arguments

model

A string specifying the model type which can be either '"age"', '"time"', '"age-time"'.

foi

A dataframe containing the FoI values. For time-varying models the columns should be:

year

Calendar years starting at the birth year of the oldest person and up to the time of the serosurvey

foi

Corresponding values of the FoI by year

For age-varying models the columns should be:.

age

Ages starting at 1 and up to the age of the oldest person in the serosurvey

foi

Corresponding values of the FoI by age

For age-and-time-varying models the columns should be:

age

Ages starting at 1 and up to the age of the oldest person in the serosurvey

time

Calendar years starting at the birth year of the oldest person and up to the time of the serosurvey

foi

Corresponding values of FoI by age and year

seroreversion_rate

A non-negative value determining the rate of seroreversion (per year). Default is 0.

Value

A dataframe with columns 'age' and 'seropositivity'.

Examples

prob_seroprev_by_age(
  model = "age",
  foi = data.frame(
    age = 1:80,
    foi = rep(0.01, 80)
  )
)
#>    age seropositivity
#> 1    1    0.009950166
#> 2    2    0.019801327
#> 3    3    0.029554466
#> 4    4    0.039210561
#> 5    5    0.048770575
#> 6    6    0.058235466
#> 7    7    0.067606180
#> 8    8    0.076883654
#> 9    9    0.086068815
#> 10  10    0.095162582
#> 11  11    0.104165865
#> 12  12    0.113079563
#> 13  13    0.121904569
#> 14  14    0.130641765
#> 15  15    0.139292024
#> 16  16    0.147856211
#> 17  17    0.156335183
#> 18  18    0.164729789
#> 19  19    0.173040866
#> 20  20    0.181269247
#> 21  21    0.189415754
#> 22  22    0.197481202
#> 23  23    0.205466397
#> 24  24    0.213372139
#> 25  25    0.221199217
#> 26  26    0.228948414
#> 27  27    0.236620506
#> 28  28    0.244216259
#> 29  29    0.251736432
#> 30  30    0.259181779
#> 31  31    0.266553044
#> 32  32    0.273850963
#> 33  33    0.281076267
#> 34  34    0.288229677
#> 35  35    0.295311910
#> 36  36    0.302323674
#> 37  37    0.309265669
#> 38  38    0.316138591
#> 39  39    0.322943126
#> 40  40    0.329679954
#> 41  41    0.336349750
#> 42  42    0.342953180
#> 43  43    0.349490905
#> 44  44    0.355963579
#> 45  45    0.362371848
#> 46  46    0.368716354
#> 47  47    0.374997732
#> 48  48    0.381216608
#> 49  49    0.387373606
#> 50  50    0.393469340
#> 51  51    0.399504421
#> 52  52    0.405479452
#> 53  53    0.411395030
#> 54  54    0.417251748
#> 55  55    0.423050190
#> 56  56    0.428790936
#> 57  57    0.434474561
#> 58  58    0.440101633
#> 59  59    0.445672715
#> 60  60    0.451188364
#> 61  61    0.456649131
#> 62  62    0.462055562
#> 63  63    0.467408199
#> 64  64    0.472707576
#> 65  65    0.477954223
#> 66  66    0.483148666
#> 67  67    0.488291422
#> 68  68    0.493383008
#> 69  69    0.498423931
#> 70  70    0.503414696
#> 71  71    0.508355803
#> 72  72    0.513247744
#> 73  73    0.518091010
#> 74  74    0.522886084
#> 75  75    0.527633447
#> 76  76    0.532333573
#> 77  77    0.536986932
#> 78  78    0.541593989
#> 79  79    0.546155205
#> 80  80    0.550671036