Skip to contents

Function that estimates incidence rates from a incidence class object and population projections.

Usage

incidence_rate(incidence_object, level, scale = 1e+05)

Arguments

incidence_object

An incidence object.

level

Administration level at which incidence counts are grouped (0 = national, 1 = state/department, 2 = city/municipality).

scale

Scale to consider when calculating the incidence_rate.

Value

A modified incidence object where counts are normalized with the population.

Examples

data_event <- epiCo::epi_data
incidence_historic <- incidence::incidence(data_event$fec_not,
  groups = data_event$cod_mun_o,
  interval = "1 year"
)
incidence_object <- subset(incidence_historic,
  from = "2015-01-04",
  to = "2018-12-27"
)
inc_rate <- incidence_rate(incidence_object, level = 2, scale = 100000)
inc_rate$rates
#>         73001    73024    73026    73030     73043    73055     73067    73124
#> [1,]  20.7351  0.00000   0.0000   0.0000  0.000000   0.0000  10.27591  0.00000
#> [2,] 113.1265  0.00000 459.7701 180.3156 39.404985 362.0052 144.68789 10.80089
#> [3,] 112.3415 22.00704 781.8788 405.5881  9.787609 196.9124 129.33264  0.00000
#>          73148     73152      73168     73200     73217     73226 73236
#> [1,]  40.13646   0.00000   9.968698  24.14584  21.85124  10.97695     0
#> [2,] 270.51398  46.97776 103.519669 120.83132 236.91484  78.38746     0
#> [3,] 365.72106 141.22078 166.775865 193.98642 311.22606 263.00743     0
#>          73268     73270     73275    73283      73319    73347      73349
#> [1,]  15.66706  12.43936  17.67159   0.0000   6.041748  0.00000   7.980846
#> [2,] 393.58331  38.27019 148.01240 183.6636 405.740931 26.95781 256.770311
#> [3,] 584.44690 233.97894 570.64356 148.0575 771.098968  0.00000 210.585996
#>          73352    73408     73411     73443     73449    73461     73483
#> [1,] 161.50969    0.000  40.22203  16.10436  41.96861  0.00000  32.79334
#> [2,]  42.18697 1366.829 505.09143 532.87861 582.98566 24.23068  92.91830
#> [3,]  25.23765 1302.897 266.49988 426.26423 596.67178 24.31315 107.85305
#>           73504    73520     73547    73555     73563     73585      73616
#> [1,]   2.902673   0.0000  15.04438  0.00000   0.00000  12.71133   4.380393
#> [2,]  66.804148 172.3614  89.80692 50.63883  70.65473 538.29526 114.305812
#> [3,] 101.135608 154.1624 134.10818 54.33939 141.20970 518.35486  17.566203
#>      73622    73624     73671     73675    73678 73686      73770    73854
#> [1,]     0   0.0000    0.0000   0.00000   0.0000     0   26.08242   0.0000
#> [2,]     0 105.5046  263.0486 829.74800 723.2472     0 1257.53209 429.5854
#> [3,]     0 106.1179 1004.5029  85.29777 560.7615     0  498.29531 224.5089
#>         73861    73870    73873
#> [1,]   0.0000  0.00000 18.81468
#> [2,] 301.9277 42.57584 38.48374
#> [3,] 218.4599 43.08952 19.50078