Convert the parameter(s) of a distribution to summary statistics
Source:R/convert_params.R
convert_params_to_summary_stats.Rd
Convert the parameters for a range of distributions to a number of summary statistics. All summary statistics are calculated analytically given the parameters.
Usage
convert_params_to_summary_stats(x, ...)
# S3 method for class 'character'
convert_params_to_summary_stats(
x = c("lnorm", "gamma", "weibull", "nbinom", "geom"),
...
)
# S3 method for class 'epiparameter'
convert_params_to_summary_stats(x, ...)
Arguments
- x
An R object.
- ...
<
dynamic-dots
>Numeric
named parameter(s) used to convert to summary statistics. An example is themeanlog
andsdlog
parameters of the lognormal (lnorm
) distribution.
Value
A list of eight elements including: mean, median, mode,
variance (var
), standard deviation (sd
), coefficient of variation (cv
),
skewness, and excess kurtosis (ex_kurtosis
).
Details
The distribution names and parameter names follow the style of
distributions in R, for example the lognormal distribution is lnorm
,
and its parameters are meanlog
and sdlog
.
Examples
# example using characters
convert_params_to_summary_stats("lnorm", meanlog = 1, sdlog = 2)
#> $mean
#> [1] 20.08554
#>
#> $median
#> [1] 2.718282
#>
#> $mode
#> [1] 0.04978707
#>
#> $var
#> [1] 21623.04
#>
#> $sd
#> [1] 147.0477
#>
#> $cv
#> [1] 7.321076
#>
#> $skewness
#> [1] 414.3593
#>
#> $ex_kurtosis
#> [1] 9220557
#>
convert_params_to_summary_stats("gamma", shape = 1, scale = 1)
#> $mean
#> [1] 1
#>
#> $median
#> [1] 0.6931472
#>
#> $mode
#> [1] 0
#>
#> $var
#> [1] 1
#>
#> $sd
#> [1] 1
#>
#> $cv
#> [1] 1
#>
#> $skewness
#> [1] 2
#>
#> $ex_kurtosis
#> [1] 6
#>
convert_params_to_summary_stats("nbinom", prob = 0.5, dispersion = 2)
#> $mean
#> [1] 2
#>
#> $median
#> [1] 1
#>
#> $mode
#> [1] 1
#>
#> $var
#> [1] 4
#>
#> $sd
#> [1] 2
#>
#> $cv
#> [1] 1
#>
#> $skewness
#> [1] 1.5
#>
#> $ex_kurtosis
#> [1] 4
#>
# example using <epiparameter>
epiparameter <- epiparameter_db(single_epiparameter = TRUE)
#> Using Linton N, Kobayashi T, Yang Y, Hayashi K, Akhmetzhanov A, Jung S, Yuan
#> B, Kinoshita R, Nishiura H (2020). “Incubation Period and Other
#> Epidemiological Characteristics of 2019 Novel Coronavirus Infections
#> with Right Truncation: A Statistical Analysis of Publicly Available
#> Case Data.” _Journal of Clinical Medicine_. doi:10.3390/jcm9020538
#> <https://doi.org/10.3390/jcm9020538>..
#> To retrieve the citation use the 'get_citation' function
convert_params_to_summary_stats(epiparameter)
#> $mean
#> [1] 9.7
#>
#> $median
#> [1] 2.576957
#>
#> $mode
#> [1] 0.1818772
#>
#> $var
#> [1] 1239.04
#>
#> $sd
#> [1] 35.2
#>
#> $cv
#> [1] 3.628866
#>
#> $skewness
#> [1] 58.67393
#>
#> $ex_kurtosis
#> [1] 46586.04
#>
# example using <epiparameter> and specifying parameters
epiparameter <- epiparameter_db(
disease = "Influenza",
author = "Virlogeux",
subset = prob_dist == "weibull"
)
#> Returning 4 results that match the criteria (3 are parameterised).
#> Use subset to filter by entry variables or single_epiparameter to return a single entry.
#> To retrieve the citation for each use the 'get_citation' function
convert_params_to_summary_stats(epiparameter[[2]], shape = 1, scale = 1)
#> $mean
#> [1] 1
#>
#> $median
#> [1] 0.6931472
#>
#> $mode
#> [1] 0
#>
#> $var
#> [1] 1
#>
#> $sd
#> [1] 1
#>
#> $cv
#> [1] 1
#>
#> $skewness
#> [1] 2
#>
#> $ex_kurtosis
#> [1] 6
#>