Introducción al cálculo de efectividad vacunal con cohortes usando vaccineff

Última actualización: 2024-11-19 | Mejora esta página

Hoja de ruta

Preguntas

  • ¿Cómo realizar el cálculo de efectividad vacunal con cohortes usando vaccineff?

Objetivos

Al final de este taller usted podrá:

  • Estudiar algunos de los conceptos claves para la implementación de estudios observacionales con diseño de cohortes

  • Calcular las métricas claves para llevar a cabo un estudio de cohortes

  • Discutir las ventajas y desventajas de los métodos de estimación no paramétricos y semi-paramétricos de modelos de superviviencia

  • Aplicar estrategias de emparejamiento de casos y control y discutir su potencial efecto sobre los estudios de cohortes

  • Estimar la efectividad vacunal haciendo uso de un diseño de cohortes

1. Introducción


En esta sesión se espera que los participantes se familiaricen con uso del paquete de Rvaccineff. Utilizaremos el diseño de cohortes para estimar la efectividad vacunal de un conjunto de datos de prueba y analizaremos los resultados obtenidos.

2. Objetivos


  • Estudiar algunos de los conceptos claves para la implementación de estudios observacionales con diseño de cohortes

  • Calcular las métricas claves para llevar a cabo un estudio de cohortes

  • Discutir las ventajas y desventajas de los métodos de estimación no paramétricos y semi-paramétricos de modelos de superviviencia

  • Aplicar estrategias de emparejamiento de casos y control y discutir su potencial efecto sobre los estudios de cohortes

  • Estimar la efectividad vacunal haciendo uso de un diseño de cohortes

3. Conceptos básicos a desarrollar


En esta práctica se desarrollarán los siguientes conceptos:

  • Eficacia y Efectividad vacunal

  • Tiempo de inducción o “delays” en el análisis de efectividad de vacunas

  • Diseños observacionales para el estudio de la efectividad vacunal

  • Diseño de cohortes para estimación de la efectividad vacunal

  • Estimador no paramétrico Kaplan-Meier

  • Modelo semi-paramétrico de Cox

  • Riesgos proporcionales

3.1. Eficacia vs Efectividad vacunal

Eficacia:

  • Se refiere a la capacidad de lograr un efecto deseado o esperado bajo condiciones ideales o controladas.

  • Es una medida teórica. En experimentos clínicos, por ejemplo, la eficacia de un medicamento se evalúa en condiciones controladas, donde todos los factores externos están cuidadosamente regulados para determinar el rendimiento puro del medicamento.

  • Puede considerarse como “lo que puede hacer” una intervención en las mejores circunstancias posibles.

Efectividad:

  • Se refiere a qué tan bien funciona una intervención en condiciones “reales” o prácticas, fuera de un entorno controlado.

  • Es una medida práctica. En el contexto de los medicamentos, la efectividad se refiere a qué tan bien funciona un medicamento en el “mundo real”, donde las condiciones no están tan controladas y hay muchos factores variables.

  • Puede considerarse como “lo que realmente hace” una intervención en circunstancias típicas o cotidianas.

Un ejemplo podría ser un medicamento que en experimentos clínicos (en condiciones ideales) mostró una eficacia del 95% en prevenir el desenlace. Sin embargo, cuando se usó en el contexto general, considerando factores como la adherencia al tratamiento, interacciones con otros medicamentos y variabilidad en la población, su efectividad fue del 85%. Aquí, la eficacia muestra el potencial del medicamento bajo condiciones ideales, mientras que la efectividad muestra cómo funciona en situaciones cotidianas.

En el caso de las vacunas la efectividad hace referencia a la disminución proporcional de casos de una enfermedad o evento en una población vacunada comparada con una población no vacunada, en condiciones del mundo real.

3.2. Tiempo de inducción

El tiempo de inducción o “delay” se refiere al periodo necesario para que la vacuna administrada induzca una respuesta inmune protectora frente a la infección o la enfermedad provocada por un patógeno. Si ocurre una infección entre el momento de la vacunación y el momento donde se prevé exista una respuesta inmune protectora, ocurrirá la infección de manera natural y no se considera un fallo de la vacuna en cuestión, puesto que la persona inmunizada aún no contaba con la protección conferida por la vacuna.

3.3. Diseños observacionales para el estudio de la efectividad vacunal

Por múltiples razones, los estudios observacionales son los más utilizados en la estimación de la efectividad vacunal. Existen múltiples diseños, entre ellos: diseño de cohortes, diseño de casos y controles, diseño de test-negativo, diseño “screening-method”. La elección del diseño, dependerá de la disponibilidad de información y los recursos disponibles para llevar a cabo el estudio.

3.4. Diseño de cohorte para el estudio de la efectividad vacunal

El término cohorte se refiere a un grupo de personas que comparten una característica común. En los estudios con diseño de cohorte, existen dos o más poblaciones que difieren en una característica o exposición y se realiza un seguimiento a ambos grupos para evaluar la aparición de uno o más desenlaces de interés y comparar la incidencia de los eventos entre ambos grupos. Para el caso de los estudios de la efectividad de vacunas, la exposición de interés corresponde a la aplicación de la vacuna y los desenlaces pueden incluir:

  • Infección: contagio con el patógeno de interés tras una exposición a alguien infeccioso

  • Enfermedad: desarrollo de signos y síntomas relacionados con la infección con un patógeno. Puede tener diferentes grados de severidad, requerir ingreso a hospitalización, UCI o incluso conducir a la muerte.

  • A la hora de llevar a cabo estos estudios se debe garantizar que las personas incluidas en cada población no tengan el desenlace de interés que será evaluado durante el seguimiento. Así mismo, es importante que el seguimiento se lleve a cabo de manera igual de rigurosa y por el mismo tiempo en ambos grupos.

La efectividad vacunal corresponde a la reducción relativa del riesgo de desarrollar la infección y/o enfermedad. En los estudios de cohorte se puede estimar el riesgo relativo, los odds ratio o los hazard ratio que expresa el riesgo que tiene la cohorte no expuesta comparado con la cohorte de los expuestos. La efectividad vacunal será, por lo tanto, el complemento del riesgo proporcional en la cohorte de expuestos.

Veamos esto con un ejemplo: para evaluar la efectividad de una vacuna para prevenir el desarrollo de enfermedad en una población, al cabo del seguimiento la incidencia en la cohorte vacunada fue de 1 por 1000 habitantes y en la cohorte no vacunada fue de 5 por 1000 habitantes. En este caso, tenemos que el riesgo relativo en la población vacunada fue 0.001/0.005 = 0,2. Es decir, la población vacunada tuvo una incidencia correspondiente al 20% de la incidencia de la población no vacunada. Esta reducción se puede atribuir a la vacuna y para estimarla usaríamos el complemento, que corresponde a 1 - 0,2= 0,8. Es decir que la reducción que se observó corresponde a un 80% y se puede atribuir a la vacuna, por lo tanto, la efectividad de la vacunación fue del 80% para evitar la enfermedad.

3.5. Métodos estadísticos para análisis de efectividad vacunal

En el diseño de cohortes se utilizan principalmente dos métodos: Estimación no paramétrica de Kapplan-Meier y Modelo semi-paramétrico de Cox

Estimador Kaplan-Meier

El estimador Kaplan-Meier utiliza las tasas de incidencia de un evento para cuantificar la probabilidad de supervivencia \(S(t)\) de forma no paramétrica, es decir, sin una representación matemática funcional. En general, la incidencia acumulada de cada grupo permite cuantificar el riesgo de presentar el evento como \(1 - S(t)\). Asimismo, la comparación entre el riesgo de ambos grupos en un punto del tiempo determina el riesgo relativo entre grupos (\(RR\)). A partir de esta se estima la efectividad vacunal como: \[V_{EFF} = 1 - RR\]

Modelo de Regresión de Cox

El modelo Cox, permite estimar de forma semi-paramétrica la función de riesgo instantáneo \(\lambda(t|x_i)\) de un individuo \(i\) en terminos de sus características, las cuales se asocian a un conjunto de covariables \(x_1, x_2, ..., x_n\), con lo cual se tiene:

\[\lambda(t|x_i) = \lambda_0(t) \exp(\beta_1 x_{i1} + \beta_2 x_{i2} + ....+\beta_n x_{in})\] donde \(\beta_1, \beta_2, ..., \beta_n\) son los coeficientes de la regresión y \(\lambda_0\) es una función basal no especificada, por lo que el modelo se asume como semi-paramétrico. En el caso en el que la función de riesgo instantáneo es completamente especificada, es decir, se conoce la forma funcional de \(\lambda_0(t)\), es posible calcular matemáticamente la probabilidad de supervivencia. Sin embargo, ninguna de estas funciones puede ser estimada directamente del modelo de Cox. Por el contrario, con este se busca estimar el hazard ratio, una medida de riesgos comparativa entre dos individuos \(i\) y \(j\) con características \(x_{i1}, x_{i2}, ..., x_{in}\) y \(x_{j1}, x_{j2}, ..., x_{jn}\), respectivamente. En este orden, al evaluar el riesgo de un individuo con respecto al otro se tiene:

\[HR = \frac{\lambda(t|x_i)}{\lambda(t|x_j)} = \frac{\lambda_0(t)\exp(\beta x_{i})}{\lambda_0(t)\exp(\beta x_{j})} = \exp(\beta(x_i-x_j))\] Riesgos proporcionales: Nótese que la dependencia temporal de las funciones de riesgo instantáneo individuales se canceló dentro de la expresion anterior para el Hazard ratio, por tanto se dice que los individuos \(i\) y \(j\) exhiben riesgos proporcionales en el tiempo. Esta hipótesis constituye un pilar importante de los estudios de efectividad bajo diseño de cohorte.

En el contexto de los estudios de cohorte, el modelo de Cox puede utilizarse para estimar el riesgo comparativo entre ambos grupos de presentar un desenlace de interés. En este sentido la pertenecia a un grupo se utiliza como covariable dentro de la regresión. Particularmente, para el cálculo de la efectividad vacunal se puede utilizar el \(HR\) de forma análoga al caso discutido para el estimador Kaplan-Meier, con lo que se define:

\[V_{EFF} = 1 - HR\]

4. Caso de uso del paquete


Para esta sesión se trabajará con el conjunto de datos de ejemplo incluido en el paquete vaccineff. Adicionalmente, se utilizarán algunas funciones de los paquetes ggplot2 y cowplot para vizualizar algunos resultados.

Para installar vaccineff ejecute las siguientes líneas en R:

R

# if(!require("pak")) install.packages("pak")
# pak::pak("epiverse-trace/vaccineff@dev")

Posteriormente, para cargar los paquetes en el espacio de trabajo y el set de datos de ejemplo del vaccineff ejecute:

R

library("vaccineff")
library("ggplot2")
library("cowplot")
data(cohortdata)
head(cohortdata)

SALIDA

        id sex age death_date death_other_causes vaccine_date_1 vaccine_date_2
1 afade1b2   F  37       <NA>               <NA>           <NA>           <NA>
2 556c8c76   M  19       <NA>               <NA>           <NA>           <NA>
3 04edf85a   M  50       <NA>               <NA>           <NA>           <NA>
4 7e51a18e   F   8       <NA>               <NA>           <NA>           <NA>
5 c5a83f56   M  66       <NA>               <NA>           <NA>           <NA>
6 7f675ec3   M  29       <NA>               <NA>     2044-04-09     2044-04-30
  vaccine_1 vaccine_2
1      <NA>      <NA>
2      <NA>      <NA>
3      <NA>      <NA>
4      <NA>      <NA>
5      <NA>      <NA>
6    BRAND1    BRAND1

Este tabla contiene información de una epidemia simulada ocurrida en 2044 sobre una población hipotética, compuesta por 100.000 habitantes, que recibió dos dosis de una vacuna para disminuir el riesgo de muerte por una enfermedad respiratoria viral. Sobre esta población se realizó seguimiento por 1 año, entre el 1 de enero y 31 de diciembre de 2044. En el conjunto de datos se presenta la información desagregada para cada uno de los participantes.

4.1 Funciones básicas de exploración de datos

4.1.2 Grupo etario

Para agrupar la población por grupo etario y graficar la distribución por edad utilizaremos la función “get_age_group”. Para esto, ejectute el siguiente comando en R:

R

cohortdata$age_group <- get_age_group(
  data = cohortdata,
  col_age = "age",
  max_val = 80,
  min_val = 0,
  step = 9)

Esta función permite agrupar la población en intervalos etarios a partir de la variable “age” del conjunto de datos. En particular, para construir la agrupación por decenios se asigna el ancho del intervalo con step = 9, el mínimo valor de edad en 0 con “min_val” y el máximo valor en 80 con “max_val”. Esto significa que cualquier registro con edad mayor o igual a 80 años se agrupará en “>80”

Puede graficar de forma rápida la distribución etaria asociada a la variable “age_group” utilizando la función “geom_bar” de la librería ggplot2. Para esto, ejecute el siguiente comando en R:

R

ggplot(data = cohortdata,
  aes(x = age_group)) +
  geom_bar() +
  theme_classic()

4.1.2. Cobertura vacunal en las cohortes

En un conjunto de datos típico de un estudio de cohorte se tiene información desagregada por persona de la(s) dosis aplicada(s) durante el seguimiento. En este sentido, es importante dimensionar el nivel de cobertura en la vacunación alcanzado durante el seguimiento. vaccineff ofrece la función “plot_coverage” que permite llevar a cabo esta tarea con facilidad. Para esto, ejecute el siguiente comando en R:

R

plot_coverage(
  data = cohortdata,
  vacc_date_col = "vaccine_date_1",
  unit = "month",
  doses_count_color = "steelblue",
  coverage_color = "mediumpurple",
  date_interval = NULL,
  cumulative = FALSE)

Esta función calcula la cobertura con base en alguna dosis, la cual se especifica en el parámetro “vacc_date_col”. En particular, en el ejemplo anterior se utiliza la primera dosis del conjunto de datos de ejemplo (“vaccine_date_1”). Además, es posible agrupar el conteo de dosis y el cálculo de cobertura en días, meses y años utilizando el parámetro “unit” y personalizar los colores de la gráfica con los parámetros “doses_count_color” y “coverage_color”. El parámetro “date_interval” se utiliza para personalizar el intervalo de datos que se quiere observar, en caso de usar “FALSE” la función toma las fechas mínima y máxima de la tabla. Finalmente, el parámetro “cumulative” permite graficar el conteo de dosis de forma acumulada en el tiempo.

4.2 Seguimiento de la cohorte y tiempos al evento

Para llevar a cabo la estimación de la efectividad vacunal primero debe definir la fecha de inicio y fin del seguimiento de cohortes, esto con base en su exploración de las bases de datos. Para el caso particular del conjunto de datos ejemplo contenidos es vaccineff se utiliza:

R

start_cohort <- as.Date("2044-01-01")
end_cohort <- as.Date("2044-12-31")

Para determinar la fecha de immunización, de un individuo vaccineff cuenta con la función get_immunization_date(). Esta calcula la fecha de inmunización seleccionando la vacuna que cumpla con el criterio de fecha límite presentado en la siguiente figura.

Esquema de fecha límite para selección de vacunas
Esquema de fecha límite para selección de vacunas

4.2.2 Tiempo de inducción del efecto (delay)

En la figura anterior se introdujo el concepto de delay. El delay del desenlace hace referencia al tiempo característico al desenlace desde que se un individuo se infecta. Por otra parte, el delay de la immunización se refiere al tiempo que se espera que transcurra antes de considerar que existe inmunidad protectora. Cada uno de estas variables puede controlarse en la función mediante los parámetros outcome_delay e immunization_delay, respectivamente. El valor que se asigne a estas depende de la naturaleza del estudio. En particular, para nuestra epidemia ejemplo utilizaremos outcome_delay = 0 dado que no es considerado como una variable relevante para determinar la fecha límite en que la vacuna podría hacer efecto. Por otra parte, el valor asumido para el de immunización es de 14 días.

Para calcular la fecha de immunización de cada individiduo escriba la siguiente instrucción en R y ejecútela:

R

cohortdata$immunization <-
  get_immunization_date(
    data = cohortdata,
    outcome_date_col = "death_date",
    outcome_delay = 0,
    immunization_delay = 14,
    vacc_date_col = c("vaccine_date_1", "vaccine_date_2"),
    end_cohort = end_cohort,
    take_first = FALSE)

Al ejecutar este comando, se añadirá una columna nueva al conjunto de datos del caso de estudio, esta columna contiene una variable de tipo “Date” que corresponde la fecha 14 días posteriores a la última dosis de cualquiera de las dos vacunas utilizadas en el caso de estudio, que cumpla con el criterio de fecha límite. Puede evidenciar la nueva columna en el conjunto de datos.

4.2.3. Definir la exposición: cohorte vacunada y cohorte no vacunada

A continuación, cree una columna nueva donde categorice cada uno de los sujetos según su estado vacunal, vacunados como “v” y no vacunados como “u” (unvaccinated, en inglés). Para esto ejecute el siguiente comando en R:

R

cohortdata$vaccine_status <- set_status(
  data = cohortdata,
  col_names = "immunization",
  status = c("vacc", "unvacc"))

Al ejecutar el comando encontrará que se ha creado una nueva columna en el conjunto de datos con los valores “vacc” o “unvacc”, para cada uno de los registros de acuerdo con su estado de vacunación, el cual se determina a partir de la variable "immunization".

4.2.3 Definir el desenlace: estado vivo vs estado fallecido

El desenlace para este ejercicio va a ser la condición vital al final del estudio. En otros ejercicios el desenlace de interés podría ser la hospitalización o la infección, dependiendo del conjunto de datos utilizado.

Tenga en cuenta que en conjunto de datos del caso de estudio todas las defunciones son debidas a la infección por el virus de interés. Para definir el desenlace de interés de acuerdo a la condición vital de los participantes en la cohorte, ejecute el siguiente comando en R:

R

cohortdata$death_status <- set_status(
  data = cohortdata,
  col_names = "death_date")

Al ejecutar este comando, nuevamente aparecerá una nueva columna en el conjunto de datos con el que se está realizando el caso de estudio. Al explorar la base de datos completa, se verifica que en la nueva columna aparece 0 = vivo y 1 = fallecido.

4.2.4. Calcular el tiempo al evento (desde exposición hasta desenlace)

Ahora, calcule para cada una de las personas el tiempo que fue seguido en el estudio. Recuerde que el seguimiento se hace igual para ambas cohortes (vacunada y no vacunada) y finaliza cuando termina el estudio o cuando se presenta el desenlace de interés. Para obtener este dato ejecute el siguiente comando en R:

R

cohortdata$time_to_death <- get_time_to_event(
  data = cohortdata,
  outcome_date_col = "death_date",
  start_cohort = start_cohort,
  end_cohort = end_cohort,
  start_from_immunization = FALSE)

Nuevamente, al ejecutar este comando se creará una nueva variable en el conjunto de datos y como se puede evidenciar al explorar los datos completos, la nueva variable estima los días de seguimiento para cada una de las personas. Esta función permite crear tiempos al evento desde el inicio del seguimiento en el caso de estudio, en este caso se utiliza la opción “start_from_immunization = FALSE” o desde la fecha de inmunización. Para este último caso es necesario asignar “start_from_immunization = TRUE” y pasar el nombre de la columna con la información sobre la fecha de inmunización en el parámetro “immunization_date_col”. En la figura a continuación se presenta un esquema de los dos métodos de cálculo del tiempo al evento.

a) Tiempo al evento evaludado desde inicio de la cohorte. b) tiempo al evento desde la fecha de immunización
a) Tiempo al evento evaludado desde inicio de la cohorte. b) tiempo al evento desde la fecha de immunización

4.3. Curvas de riesgo acumulado y supervivencia al desenlace en cada cohorte

Como primera aproximación a la efectividad vacunal, graficaremos la curva de riesgos acumulados (1 menos la supervivencia de las poblaciones). Esta nos permite entender de forma cualitativa cuál de las poblaciones acumula mayor riesgo durante el estudio de cohorte. Y por tanto, evaluar hipótesis sobre el potencial efecto de la vacunación sobre la cohorte. Para graficar el riesgo acumulado ejecute el siguiente comando en R:

R

plot_survival(data = cohortdata,
  outcome_status_col = "death_status",
  time_to_event_col = "time_to_death",
  vacc_status_col = "vaccine_status",
  vaccinated_status = "vacc",
  unvaccinated_status = "unvacc",
  vaccinated_color = "steelblue",
  unvaccinated_color = "darkred",
  start_cohort = start_cohort,
  end_cohort = end_cohort,
  percentage = TRUE,
  cumulative = TRUE)

A partir de la función anterior también es posible realizar la gráfica de supervivencia de las cohortes o gráfica de Kaplan-Meier en la cual se parte del 100% de ambas cohortes en el eje de las ordenadas y en el eje de las abscisas se representa el tiempo y se observa la disminución que hay debido a las defunciones en cada cohorte. Tenga en cuenta que este no es el estimador de Kaplan-Meir, es sólo la gráfica sobre las curvas de supervivencia y de riesgo acumulado. Para obtener este gráfico, se ejecuta la misma función y se cambia el argumento “percentage” por FALSE:

R

plt_surv <- plot_survival(data = cohortdata,
  outcome_status_col = "death_status",
  time_to_event_col = "time_to_death",
  vacc_status_col = "vaccine_status",
  vaccinated_status = "vacc",
  unvaccinated_status = "unvacc",
  vaccinated_color = "steelblue",
  unvaccinated_color = "darkred",
  start_cohort = start_cohort,
  end_cohort = end_cohort,
  percentage = TRUE,
  cumulative = FALSE)
plt_surv

4.4. Evaluación de la hipótesis riesgos proporcionales

Previo a la estimación de la efectividad vacunal es importante testear la hipótesis de riesgos proporcionales entre las cohortes de vacunados y no vacunados, con el fin de identificar posibles sesgos muestrales que afecten la validez de los resultados y definir estrategias de cálculo de cohortes dinámicas, emparejamiento o estratificación, entre otras, que permitar contrarestar este efecto. Un método cualitativo utilizado ampliamente en la literatura es la transformación de la probabilidad de supervivencia mediante la función logaritmo natural como \(\log[-\log[S(t)]]\). Al graficar esta función contra el logaritmo del tiempo al evento, es posible identificar si los grupos representan riesgos proporcionales cuando sus curvas se comportan de forma aproximadamente paralela.

A continuación se presentan las gráficas loglog obtenidas al construir los tiempos al evento de forma dinámica (panel de la izquiera) y con punto de inicio fijo (panel de la derecha). Particularmente, se observa que el cálculo dinámico de los tiempos no satisface riesgos proporcionales, por lo que pontencialmente necesitará algún tipo de estrategia para contrarestar los posibles sesgos muestrales.

4.5. Estimación de la efectividad vacunal

Modelo de Cox

En todos los estudios observacionales de efectividad vacunal de cohorte se compara el riesgo (o tasa de incidencia) entre los vacunados y no vacunados de desarrollar el desenlace de interés (infección, enfermedad, muerte, etc). La medida de riesgo a utilizar dependerá de las características de la cohorte y puede expresarse en términos de relative risk (RR) o hazard ratio (HR).

En este ejercicio utilizaremos el modelo de regresión de riesgos proporcionales de Cox para estimar el hazar ratio y con esta medida estimar la efectividad mediante

VE= 1-HR

Para estimar la efectividad vacunal en términos de HR, ejecute el siguiente comando en R:

R

coh_eff_noconf(
  data = cohortdata,
  outcome_status_col = "death_status",
  time_to_event_col = "time_to_death",
  status_vacc_col = "vaccine_status")

SALIDA

      HR HR_low HR_high  V_eff V_eff_low V_eff_high     PH      p_value
1 0.2684 0.1855  0.3884 0.7316    0.6116     0.8145 reject 0.0009088627

4.6 Cohorte dinámica - Emparejamiento poblacional

El comando anterior arrojó la efectividad vacunal obtenida mediante el model de Cox. Sin embargo, en la columna PH aparece la palabra rejected. Esto significa que pese a que las curvas de ambos grupos son paralelas la evaluación de la hipótesis de riesgos proporcionales haciendo uso del test de Schoenfeld no es satisfactoria. Esto debido a los potenciales sesgos muestrales inducidos por la estrategia de vacunación desplegada sobre la población. Una estrategia para contrarestas dichos sesgos es el emparejamiento dinámico de la población. En la siguiente figura se presenta un esquema de emparejamiento orientado a disminuir los sesgos muestrales.

4.7 Próximos características

  • Estimador Kaplan-Meier

  • Curva loglog para evaluación de riesgos proporcionales

  • Matching dinámico

  • Censura

5. Reflexión


En esta sesión se llevó a cabo una estimación básica de la efectividad vacunal mediante un estudio de cohorte, haciendo uso de los estimador Kaplan-Meier y del modelo de Cox. Adicionalmente, se estudió la hipótesis de riesgos proporcionales para los grupos vacunado y no vacunado comparando la construcción de tiempos al evento de forma dinámica y fija. Se observó que pese a que la hipótesis de riesgos proporcionales se corrobora gráficamente en la consrucción de los tiempos al evento con fecha de inicio fija, al evaluar el modelo de riesgos proporcionales de Cox el test de Schoenfeld rechaza esta hipótesis. En general la decisión sobre aceptar o no los resultados es altamente dependiente del acceso a información adicional relevante que permita realizar ajustes a la estimación y capturar dinámicas relevantes.


Reto


Reto


Puntos Clave

  • Estudiar algunos de los conceptos claves para la implementación de estudios observacionales con diseño de cohortes

  • Calcular las métricas claves para llevar a cabo un estudio de cohortes

  • Discutir las ventajas y desventajas de los métodos de estimación no paramétricos y semi-paramétricos de modelos de superviviencia

  • Aplicar estrategias de emparejamiento de casos y control y discutir su potencial efecto sobre los estudios de cohortes

  • Estimar la efectividad vacunal haciendo uso de un diseño de cohortes

Sobre este documento

Este documento ha sido diseñado por David Santiago Quevedo para el Curso Internacional: Análisis de Brotes y Modelamiento en Salud Pública, Bogotá 2023. TRACE-LAC/Javeriana.

Contribuciones

  • David Santiago Quevedo

  • Santiago Loaiza

  • Zulma Cucunubá