Acceder a las distribuciones de retrasos epidemiológicos


Figura 1

Definición de los periodos de tiempo clave. En Xiang et al, 2021
Definición de los periodos de tiempo clave. En Xiang et al, 2021

Figura 2

Vídeo del Centro MRC para el Análisis Global de las Enfermedades Infecciosas, Ep 76. Ciencia en Contexto - Grupo de Revisión de Parámetros Epi con la Dra. Anne Cori (27-07-2023) en https://youtu.be/VvpYHhFDIjI?si=XiUyjmSV1gKNdrrL
Vídeo del Centro MRC para el Análisis Global de las Enfermedades Infecciosas, Ep 76. Ciencia en Contexto - Grupo de Revisión de Parámetros Epi con la Dra. Anne Cori (27-07-2023) en https://youtu.be/VvpYHhFDIjI?si=XiUyjmSV1gKNdrrL

Figura 3

Un Esquema de la relación de los distintos periodos de tiempo de transmisión entre un infector y un infectado en un par de transmisión. La ventana de exposición se define como el intervalo de tiempo que tiene la exposición viral, y la ventana de transmisión se define como el intervalo de tiempo para la transmisión posterior con respecto al tiempo de infección (Chung Lau et al., 2021).
Un Esquema de la relación de los distintos periodos de tiempo de transmisión entre un infector y un infectado en un par de transmisión. La ventana de exposición se define como el intervalo de tiempo que tiene la exposición viral, y la ventana de transmisión se define como el intervalo de tiempo para la transmisión posterior con respecto al tiempo de infección (Chung Lau et al., 2021).

Figura 4

Intervalos seriales de posibles parejas de casos en (a) COVID-19 y (b) MERS-CoV. Los pares representan un supuesto infector y su presunto infectado trazados por fecha de inicio de los síntomas (Althobaity et al., 2022).
Intervalos seriales de posibles parejas de casos en (a) COVID-19 y (b) MERS-CoV. Los pares representan un supuesto infector y su presunto infectado trazados por fecha de inicio de los síntomas (Althobaity et al., 2022).

Figura 5

Distribución ajustada del intervalo serial para (a) COVID-19 y (b) MERS-CoV basada en pares de transmisión notificados en Arabia Saudí. Ajustamos tres distribuciones comunmente usadas, Log normal, Gamma y Weibull, respectivamente (Althobaity et al., 2022).
Distribución ajustada del intervalo serial para (a) COVID-19 y (b) MERS-CoV basada en pares de transmisión notificados en Arabia Saudí. Ajustamos tres distribuciones comunmente usadas, Log normal, Gamma y Weibull, respectivamente (Althobaity et al., 2022).

Figura 6

El Intervalo serial de nuevas infecciones por coronavirus (COVID-19) superpuesto a una distribución publicada del SRAS. (Nishiura et al., 2020)
El Intervalo serial de nuevas infecciones por coronavirus (COVID-19) superpuesto a una distribución publicada del SRAS. (Nishiura et al., 2020)

Figura 7


Cuantificar la transmisión


Figura 1


Figura 2


Figura 3


Figura 4


Figura 5


Figura 6


Utilizar distribuciones de retraso en el análisis


Figura 1

Las cuatro funciones de probabilidad de la distribución normal (Jack Weiss, 2012)
Las cuatro funciones de probabilidad de la distribución normal (Jack Weiss, 2012)

Figura 2


Figura 3


Figura 4

Calendario de notificación de la cadena de enfermedades, Países Bajos. Lab, laboratorio; PHA, autoridad sanitaria pública. En Marinović y otros, 2015
Calendario de notificación de la cadena de enfermedades, Países Bajos. Lab, laboratorio; PHA, autoridad sanitaria pública. En Marinović y otros, 2015

Figura 5

R_{t} es una medida de la transmisión en el momento t. Observaciones después del tiempo t deben ajustarse. UCI, unidad de cuidados intensivos. En Gostic et al., 2020
\(R_{t}\) es una medida de la transmisión en el momento \(t\). Observaciones después del tiempo \(t\) deben ajustarse. UCI, unidad de cuidados intensivos. En Gostic et al., 2020

Figura 6


Figura 7


Figura 8


Estimación de la severidad del brote


Figura 1

Escenarios de Planificación de Pandemias del HHS basados en el Marco de Evaluación de la Gravedad de la Pandemia. Éste utiliza una medida combinada de gravedad clínica y transmisibilidad para caracterizar los escenarios de pandemia de gripe. HHS: Departamento de Salud y Servicios Humanos de los Estados Unidos (CDC, 2016).
Escenarios de Planificación de Pandemias del HHS basados en el Marco de Evaluación de la Gravedad de la Pandemia. Éste utiliza una medida combinada de gravedad clínica y transmisibilidad para caracterizar los escenarios de pandemia de gripe. HHS: Departamento de Salud y Servicios Humanos de los Estados Unidos (CDC, 2016).

Figura 2

Estimaciones sesgadas de la probabilidad de muerte como función del tiempo (línea gruesa), calculado como el número acumulado de muertes dividido por el número de casos confirmados en el tiempo t. La estimación de la probabilidad de muerte al final de un brote (~30 de mayo) corresponde con la probabilidad de muerte verdadera. La línea continua horizontal y las líneas de puntos muestran el valor esperado y los intervalos de confianza del 95% (95% IC) de la predicción de la probabilidad de muerte ajustada al retraso temporal entre el periodo inicial de síntomas y muerte , utilizando los datos observados hasta el 27 de Marzo de 2003 (Nishiura et al., 2009)
Estimaciones sesgadas de la probabilidad de muerte como función del tiempo (línea gruesa), calculado como el número acumulado de muertes dividido por el número de casos confirmados en el tiempo \(t\). La estimación de la probabilidad de muerte al final de un brote (~30 de mayo) corresponde con la probabilidad de muerte verdadera. La línea continua horizontal y las líneas de puntos muestran el valor esperado y los intervalos de confianza del 95% (\(95%\) IC) de la predicción de la probabilidad de muerte ajustada al retraso temporal entre el periodo inicial de síntomas y muerte , utilizando los datos observados hasta el 27 de Marzo de 2003 (Nishiura et al., 2009)

Figura 3

Espectro de casos de COVID-19. La probabilidad de muerte pretende estimar la proporción de muertes entre los casos confirmados en una epidemia. (Verity et al., 2020)
Espectro de casos de COVID-19. La probabilidad de muerte pretende estimar la proporción de muertes entre los casos confirmados en una epidemia. (Verity et al., 2020)

Figura 4


Figura 5


Figura 6

Riesgo observado (sesgado) de muerte confirmada del síndrome respiratorio agudo grave (SRAS) en Hong Kong, 2003. (Nishiura et al., 2009)
Riesgo observado (sesgado) de muerte confirmada del síndrome respiratorio agudo grave (SRAS) en Hong Kong, 2003. (Nishiura et al., 2009)

Figura 7

Determinación temprana del riesgo de muerte confirmada ajustado al retraso del síndrome respiratorio agudo grave (SRAS) en Hong Kong, 2003. (Nishiura et al., 2009)
Determinación temprana del riesgo de muerte confirmada ajustado al retraso del síndrome respiratorio agudo grave (SRAS) en Hong Kong, 2003. (Nishiura et al., 2009)

Figura 8

La población de casos confirmados y el proceso de muestreo para estimar el CFR sin sesgo durante el transcurso de un brote. (Nishiura et al., 2009)
La población de casos confirmados y el proceso de muestreo para estimar el CFR sin sesgo durante el transcurso de un brote. (Nishiura et al., 2009)

Figura 9

Niveles de gravedad de las infecciones por SRAS-CoV-2 y parámetros de interés. Se supone que cada nivel es un subconjunto del nivel inferior.
Niveles de gravedad de las infecciones por SRAS-CoV-2 y parámetros de interés. Se supone que cada nivel es un subconjunto del nivel inferior.

Figura 10

Diagrama esquemático de los análisis de referencia. Las flechas rojas, azules y verdes indican el flujo de datos desde los casos confirmados por laboratorio de la vigilancia pasiva, los casos diagnosticados clínicamente y los casos confirmados por laboratorio de los cribados activos.
Diagrama esquemático de los análisis de referencia. Las flechas rojas, azules y verdes indican el flujo de datos desde los casos confirmados por laboratorio de la vigilancia pasiva, los casos diagnosticados clínicamente y los casos confirmados por laboratorio de los cribados activos.