Skip to contents

As you know, ColOpenData can be used to access both geospatial and demographic data from Colombia, in independent modules. However, we thought it would be helpful to present a module that incorporates a way to merge information between geospatial and demographic data. In this vignette you will learn how to use the function merge_geo_demographic().

Disclaimer: all data is loaded to the environment in the user’s R session, but is not downloaded to user’s computer.

How to merge geospatial and demographic data

Documentation access

Geospatial and demographic data can be merged based on the spatial aggregation level (SAL). While geospatial data can be aggregated down to the block level, demographic data is typically available only at the department and municipality levels. Therefore, these are the only SAL that can be accessed in both types of data for merging.

Now, the merge_geo_demographic() function takes as a parameter the demographic dataset of interest. Therefore, we should first access the demographic documentation to know which dataset we want to work with. Let’s suppose we want to select a dataset at the department level. We can load all demographic available datasets and then filter the level by the desired SAL.

datasets_dem <- list_datasets("demographic", "EN")

department_datasets <- datasets_dem[datasets_dem["level"] == "department", ]

head(department_datasets)
#> # A tibble: 6 × 7
#>   name                 group       source year  level      category  description
#>   <chr>                <chr>       <chr>  <chr> <chr>      <chr>     <chr>      
#> 1 DANE_CNPVH_2018_1HD  demographic DANE   2018  department househol… Number of …
#> 2 DANE_CNPVH_2018_2HD  demographic DANE   2018  department househol… Number of …
#> 3 DANE_CNPVH_2018_3HD  demographic DANE   2018  department househol… Households…
#> 4 DANE_CNPVPD_2018_1PD demographic DANE   2018  department persons_… Total cens…
#> 5 DANE_CNPVPD_2018_3PD demographic DANE   2018  department persons_… Total cens…
#> 6 DANE_CNPVPD_2018_4PD demographic DANE   2018  department persons_… Census pop…

After reviewing the available datasets, we can select the one we wish to work with and take a closer look. For instance, let’s suppose we choose the dataset “DANE_CNPVPD_2018_14BPD”.

chosen_dataset <- download_demographic("DANE_CNPVPD_2018_14BPD")
#> Original data is retrieved from the National Administrative Department
#> of Statistics (Departamento Administrativo Nacional de Estadística -
#> DANE).
#> Reformatted by package authors.
#> Stored by Universidad de Los Andes under the Epiverse TRACE iniative.

head(chosen_dataset)
#>   codigo_departamento departamento  sexo grupo_de_edad  area
#> 1               total     Nacional total         total total
#> 2               total     Nacional total         total total
#> 3               total     Nacional total         total total
#> 4               total     Nacional total         total total
#> 5               total     Nacional total         total total
#> 6               total     Nacional total         total total
#>                                      servicio_salud_al_que_acudieron   total
#> 1                      total_personas_que_tuvieron_alguna_enfermedad 4528062
#> 2                                                    sin_informacion    7942
#> 3 a_la_entidad_de_seguridad_social_en_salud_a_la_cual_esta_afliado_a 3383667
#> 4                                             a_un_medico_particular  316709
#> 5                                a_un_boticario_farmaceuta_droguista  165061
#> 6                                            a_terapias_alternativas    8791

chosen_data presents information regarding health service attended by people that in the last thirty days had an illness, accident, dental problem or other health problem. Now, we can use the merge_geo_demographic() function.

The simplified argument downloads a simplified version of the geometries. This is not recommended for very accurate applications, but for a simple plot the approximation is enough. Also, it makes the download process much faster. To override this, you could use simplified = FALSE.

merged_data <- merge_geo_demographic(
  demographic_dataset =
    "DANE_CNPVPD_2018_14BPD"
)
#> Original data is retrieved from the National Administrative Department
#> of Statistics (Departamento Administrativo Nacional de Estadística -
#> DANE).
#> Reformatted by package authors.
#> Stored by Universidad de Los Andes under the Epiverse TRACE iniative.

head(merged_data)
#> Simple feature collection with 6 features and 17 fields
#> Geometry type: MULTIPOLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -77.12783 ymin: 3.730633 xmax: -71.94885 ymax: 11.10537
#> Geodetic CRS:  WGS 84
#>   codigo_departamento departamento version        area   latitud  longitud
#> 1                  05    Antioquia    2018 62804708983  6.922796 -75.56499
#> 2                  08    Atlántico    2018  3315752105 10.677010 -74.96522
#> 3                  11 Bogotá, D.C.    2018  1622852605  4.316108 -74.18107
#> 4                  13      Bolívar    2018 26719196397  8.745271 -74.50864
#> 5                  15       Boyacá    2018 23138048132  5.776607 -73.10207
#> 6                  17       Caldas    2018  7425221672  5.342066 -75.30688
#>   total_personas_que_tuvieron_alguna_enfermedad sin_informacion
#> 1                                        607587             386
#> 2                                        136114              61
#> 3                                        821237             367
#> 4                                        141100              70
#> 5                                        127593              41
#> 6                                        108484              35
#>   a_la_entidad_de_seguridad_social_en_salud_a_la_cual_esta_afliado_a
#> 1                                                             481028
#> 2                                                              99448
#> 3                                                             606769
#> 4                                                              97660
#> 5                                                              98319
#> 6                                                              86471
#>   a_un_medico_particular a_un_boticario_farmaceuta_droguista
#> 1                  47391                               18035
#> 2                   9862                                2954
#> 3                  74809                               25556
#> 4                   9693                                3638
#> 5                   9122                                4153
#> 6                   6388                                3338
#>   a_terapias_alternativas acudio_a_una_autoridad_indigena_espiritual
#> 1                     937                                        107
#> 2                     187                                         10
#> 3                    2194                                        130
#> 4                     227                                         25
#> 5                     276                                         15
#> 6                     132                                         83
#>   otro_medico_de_un_grupo_etnico uso_remedios_caseros se_autorreceto
#> 1                            318                24227          19728
#> 2                             22                 6011          14288
#> 3                            351                65359          23385
#> 4                             64                 9650          15396
#> 5                             61                10023           2503
#> 6                            112                 6743           2784
#>   no_hizo_nada                           geom
#> 1        15430 MULTIPOLYGON (((-74.83058 8...
#> 2         3271 MULTIPOLYGON (((-74.91077 1...
#> 3        22317 MULTIPOLYGON (((-74.15067 4...
#> 4         4677 MULTIPOLYGON (((-76.17318 9...
#> 5         3080 MULTIPOLYGON (((-72.04767 7...
#> 6         2398 MULTIPOLYGON (((-74.66496 5...

merged_data presents geospatial information related to departments, as well as the information related to the health service attended by the population. We can use this dataset to visualize the proportion of people in each department who used home remedies for health issues. To achieve this, we will calculate the proportion by dividing the count of people who reported using home remedies (“uso_remedios_caseros”) by the total count of people who reported experiencing a health problem in each department.

merged_data <- merged_data %>%
  mutate(proportion_home_remedies = uso_remedios_caseros /
    total_personas_que_tuvieron_alguna_enfermedad)

We can now plot the results

ggplot(data = merged_data) +
  geom_sf(mapping = aes(fill = proportion_home_remedies), color = "white") +
  theme_minimal() +
  theme(
    plot.background = element_rect(fill = "white", colour = "white"),
    panel.background = element_rect(fill = "white", colour = "white"),
    panel.grid = element_blank(),
    axis.text = element_blank(),
    axis.ticks = element_blank(),
    plot.title = element_text(hjust = 0.5)
  ) +
  scale_fill_gradient("Count", low = "#10bed2", high = "#deff00") +
  ggtitle(
    label = "Proportion of people who reported using home remedies to treat
    a health problem",
    subtitle = "Colombia"
  )