Skip to contents

Aggregate time series downloaded climate data to day, month or year. Only observations under the tags TSSM_CON, TMN_CON, TMX_CON, PTPM_CON, and BSHG_CON can be aggregated, since are the ones where methodology for aggregation is explicitly provided by the source.

Usage

aggregate_climate(climate_data, frequency)

Arguments

climate_data

data.frame obtained from download functions. Only observations under the same tag can be aggregated.

frequency

character with the aggregation frequency: ("day", "month" or "year").

Value

data.frame object with the aggregated data.

Examples

# \donttest{
lat <- c(4.172817, 4.172817, 4.136050, 4.136050, 4.172817)
lon <- c(-74.749121, -74.686169, -74.686169, -74.749121, -74.749121)
polygon <- sf::st_polygon(x = list(cbind(lon, lat)))
geometry <- sf::st_sfc(polygon)
roi <- sf::st_as_sf(geometry)
ptpm <- download_climate_geom(roi, "2022-11-01", "2022-12-31", "PTPM_CON")
#> Original data is retrieved from the Institute of Hydrology, Meteorology
#> and Environmental Studies (Instituto de Hidrología, Meteorología y
#> Estudios Ambientales - IDEAM).
#> Reformatted by package authors.
#> Stored by Universidad de Los Andes under the Epiverse TRACE iniative.
monthly_ptpm <- aggregate_climate(ptpm, "month")
head(monthly_ptpm)
#> # A tibble: 2 × 6
#>    station longitude    latitude   date       tag      value
#>      <dbl> <chr>        <chr>      <date>     <chr>    <dbl>
#> 1 21190290 -74.71311111 4.16102778 2022-11-01 PTPM_CON   192
#> 2 21190290 -74.71311111 4.16102778 2022-12-01 PTPM_CON    69
# }